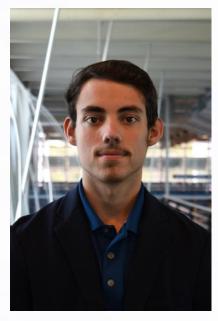
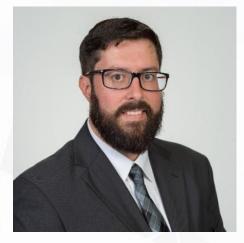


Team Introductions

Mason Gibson Manufacturing Engineer

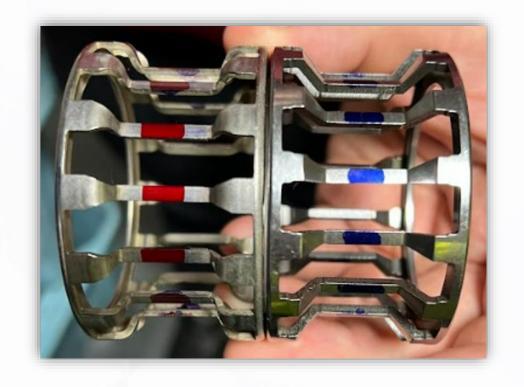

Wesley Jean-Pierre Mechanical Design Engineer

Max Jones
Project Manager &
Control Engineer


Andrew McClung
Systems Integration
Engineer

Anthony Wuerth
Manufacturing &
Design Engineer

Sponsor and Advisor


Ingineering Mentor
Joshua Jones
Process Engineer
JTEKT North America

Academic Advisor
Shayne McConomy, Ph.D.
Senior Design Professor

Project Objective

The objective of this project is to automate the process of painting needle bearing retainers.

Project Overview

Wesley Jean-Pierre

Key Goals

Accurately Apply Metal Paint to the Bearing

Accommodate
Bearings from
7/8-2 ½ in.
(Outer Diameter)

Automate Bearing Painting Process

Assumptions

Manually Loaded and Unloaded

Loaded with One Type of Bearing at a Time

A standard 120V Wall Outlet is Available

Paint With One Color per Load

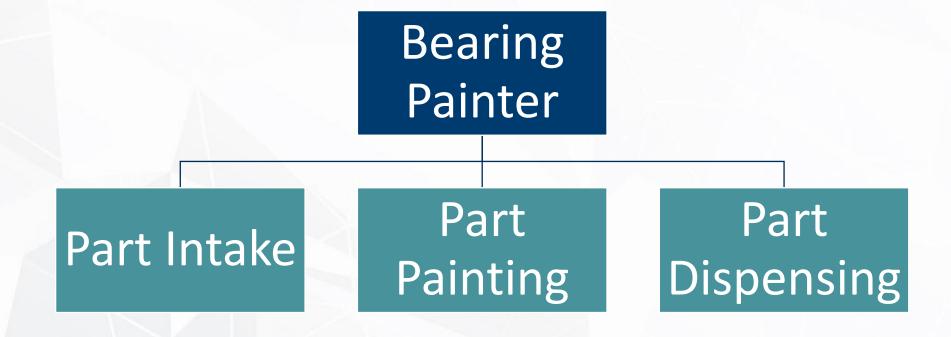
Customer Needs

Fully Automated (except loading)

Fit Into Existing Fume Hood

Accommodate Different Sized Bearings

Able to Load 10 Bearings at a Time

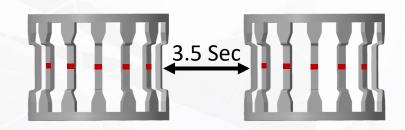

3.5 Second Cycle Time

Paint Non-Working Surface Only

Defined Systems

Targets & Metrics

Andrew McClung


Critical Targets

Consistently paint full 360° of retainers

Cycle time of 3.5 seconds

Fit inside a pre-existing Fume Hood (2ft. X 3ft. X 3ft.)

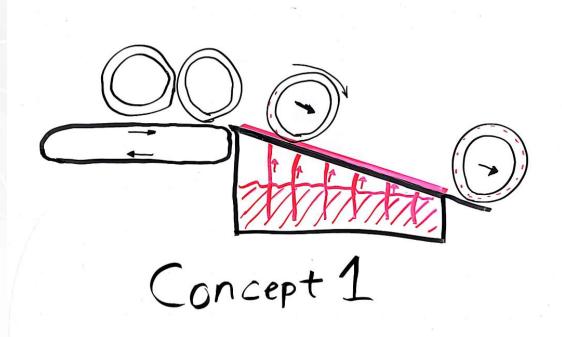


Critical Targets

Limit Extraneous paint on working surface to 1 mm²

Accommodate retainers from 7/8 to 2 ½ inches in diameter

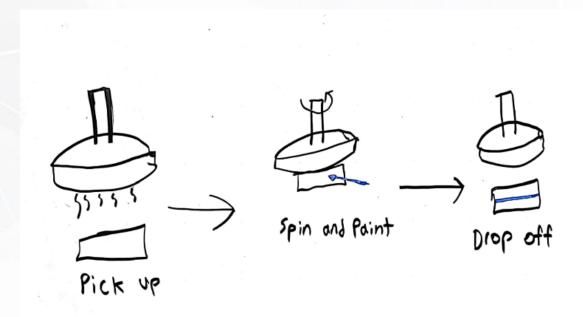
Outer Diameter



Concept Generation

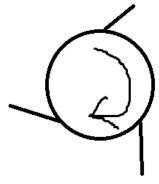
Mason Gibson

14

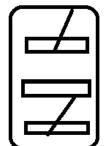


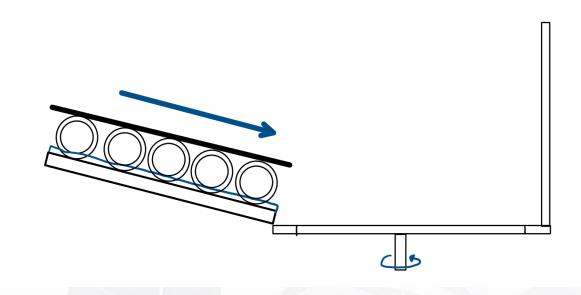
Key Features

- Conveyor belt feeds the bearings
- Bearing rolls down a ramp to be painted
- Paint felt strip fed by a reservoir of Dykem underneath

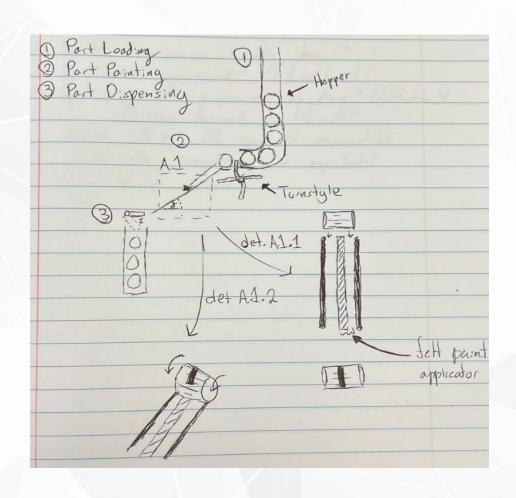

15

Key Features


- Parts fed by a hopper mechanism
- An electromagnet is activated to pick up the bearings
- The magnet rotates to paint the bearing


Cylinder with retractable spline

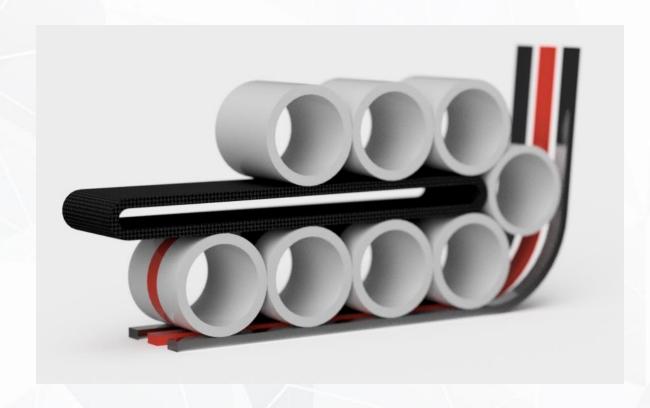
Bearing with spline attached


- Retractable spline
- Multiple bearings can be stacked down the spline
- The spline is manually loaded

- Parts roll down an inclined track
- Rotating disk to assist with drying
- Would paint parts in batches instead of continuously

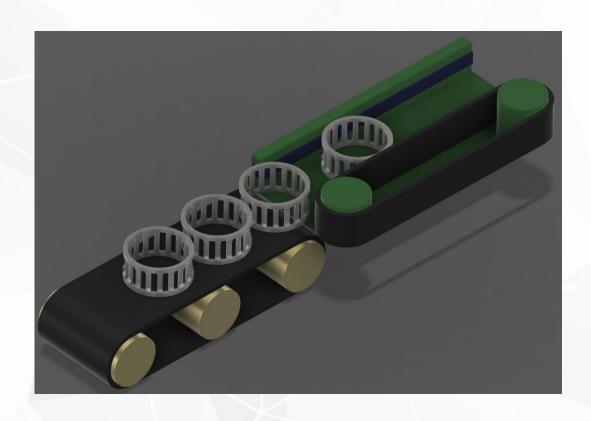
- Uses a vertical hopper that leads to a turnstile
- Inclined ramp that parts would roll down to get painted
- Finished bearings would stack at the base

High Fidelity Concept 1 (Linear Processor)


Key Features

- Parts stack in line with a linear actuator
- Part at the end would be pushed on a belt and rotated
- Painting arm that pivots to paint the part

Team 515 - VDR 2


High Fidelity Concept 2 (Inverted Treadmill)

- Parts are moved along a belt to a surface with Dykem
- Pushed along the Dykem by the bottom of the belt
- Allows for compact design

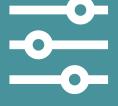
High Fidelity Concept 3 (Double Conveyor)

- Belt brings the parts into the painting system
- One belt moves the parts along while the other side paints
- Benchmarked from a labeling machine

Concept Selection

Andrew McClung

Selection Process


Binary Pairwise Comparison

House of Quality

Pugh Chart

Analytical
Hierarchy Process

Binary Pairwise Comparison

Function

- Tool to assist in ranking the importance of customer requirements
- Assigns each requirement an importance weight factor
- Requirements and weight factors assist in the development of the House of Quality

Results

The 3 most important requirements were found to be:

- 1. Paint correct area
- 2. Process range of sizes
- 3. Use multiple colors

House of Quality

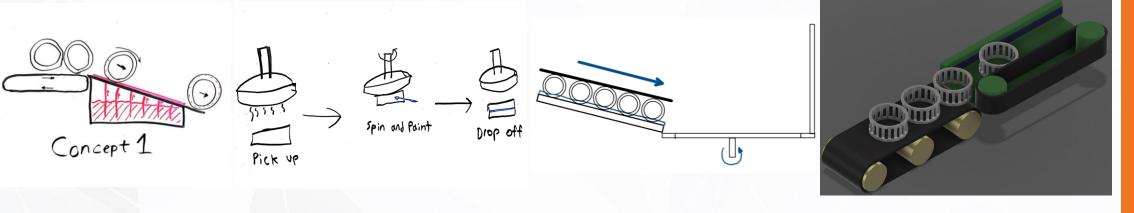
Production Rate

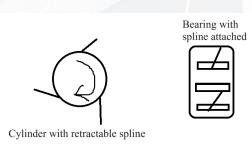
Processing Accuracy

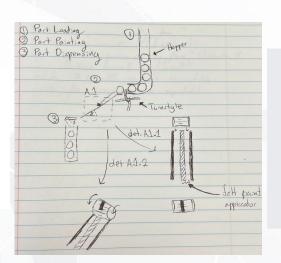
Compatibility

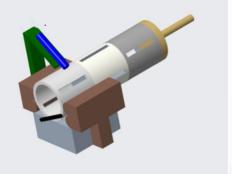
Size

Part Intake Limit


Automatic Operation %


Reliability


Maintenance Interval

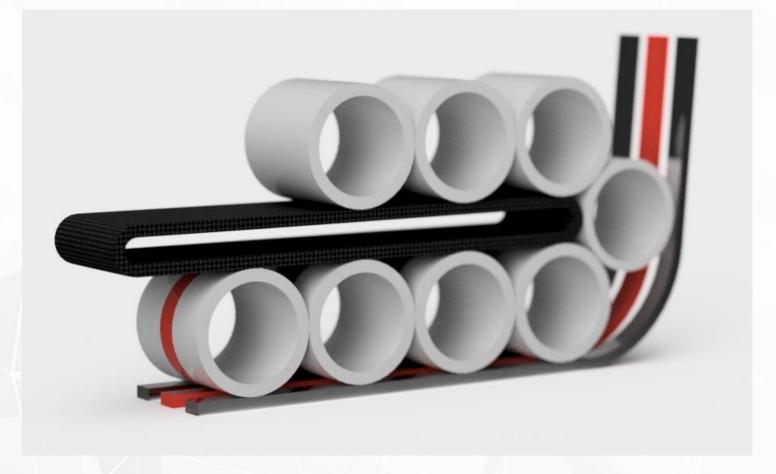

Pugh Chart

DATUM

Analytical Hierarchy Process

Function

- Utilizes matrices to compare importance of criteria
- Criteria are Engineering characteristics & design concepts


Results

- Compatibility is the highest weighted engineering characteristic
- Inverted Treadmill with the highest rating of importance on criteria

Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

Final Selection

"Inverted Treadmill"

Future Work

Testing with Dykem

Design Analysis

Developing CAD Models

Bill of Materials and Ordering

Questions?

Team Introduction

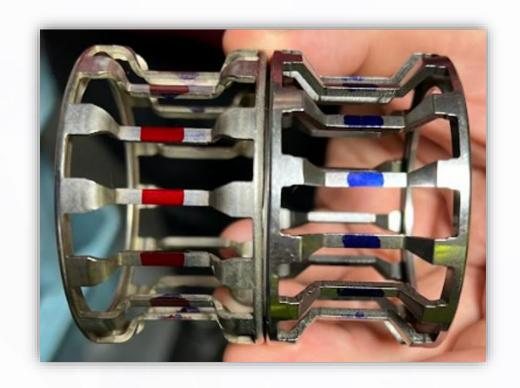
Project Objective

Project Overview

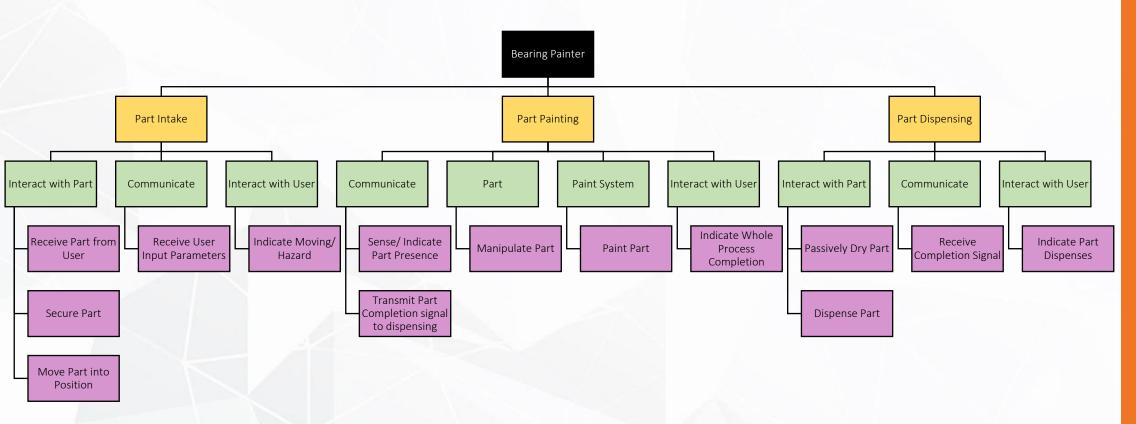
<u>Targets</u>

Concept Generation

Selected Concept



Retainer Painting


Some Customers Require Part Marking To Help Distinguish Similar Parts

- Low Production Runs
- Tedious, Manual Process
 - Operator Pulled From Position
 - Decreased Efficiency

Functions Hierarchy Chart

Binary Pairwise Comparison Chart									
Customer Requirements	1	2	3	4	5	6	7	8	Total
1. Atomated Process	-	1	0	0	0	1	0	1	3
2. Cycle Time	0	-	1	0	0	1	0	1	3
3. Paint Correct Area	1	0	-	1	1	1	1	1	6
4. Fit in Fume Hood	1	1	0	-	0	1	0	1	4
5. Process Range of Sizes	1	1	0	1	_	1	0	1	5
6. Quickly Configurable	0	0	0	0	0	-	0	1	1
7. Use Multiple Colors	1	1	0	1	1	1	_	0	5
8. Indicate Operation Status	0	0	0	0	0	0	1	_	1
Total	4	4	1	3	2	6	2	6	n - 1 = 7

FAMU-FSU College of Engineering

	Engineering Characteristic								
Improvement Direction		1	-	1	\downarrow	1	\downarrow	\downarrow	-
Units		Part/min	mm^2	Diameter	Sqft	Part/Load	%	%	Part/invl
Customer Requirements	Importance Weight Factor	Production Rate	Processing Accuracy	Compatibility	Size	Part Intake Limit	Automatic Operation %	Reliability	Maintenance Interval
1. Atomated Process	3	9		3	9	9	9		
2. Cycle Time	3	3	9	9		9	9	3	3
3. Paint Correct Area	6	1	9	9				1	1
4. Fit in Fume Hood	4			3	9	9			
5. Process Range of Sizes	5	1	9	9	9	3	9		
6. Quickly Configurable	1	3	3	9	3	9	3		
7. Use Multiple Colors	5	3	3		9	3	3	1	3
8. Indicate Operation Status	1	3		1		3	3	3	1
Raw Sco	Raw Score (628)		144	157	156	132	120	23	31
Relative V	Veight %	10.83	22.93	25.00	24.84	21.02	19.11	3.66	4.94
Ran	nk Order	6	3	1	2	4	5	8	7

	Concepts								
Engineering Characteristics	RANDBRIG HT RB 60	Linear Processor	Inverted Treadmill	Double Conveyor	Felt Ramp	Electromagnet	Spline	Pore Track	Gravity Ramp
Compatibility		S	S	-	S	-	S	+	+
Size		S	+	S	+	S	S	-	-
Part Intake Limit	- I	S	+	S	S	S	S	S	S
Processing Accuracy		S	S	S	-	-	S	S	-
Automatic Operation %] IAI	S	+	+	S	+	S	S	-
Total Pluses] [0	3	1	1	1	0	1	1
Total Satisfactory		5	2	3	3	2	5	3	1
Total Minuses		0	0	1	1	2	0	1	3

V	Concepts					
	Engineering Characteristics	Linear Procesor	Inverted Treadmill	Double Conveyor	Felt Ramp	Pore Track
	Compatibility		S	S	+	-
	Size		+	S	-	-
	Part Intake Limit	- J	+	+	S	S
	Processing Accuracy	DATUM	+	+	-	-
	Automatic Operation %	ΙΑΊ	+	+	S	S
	Total Pluses	П-	4	3	1	0
	Total Satisfactory		1	2	2	2
	Total Minuses		0	0	2	3

	[C] Matrix									
Analytical Hierarchy Process		A	A	A	A	A				
В	Engineering Charactersitic	Compatibility	Size	Part Intake Limit	Processing Accuracy	Automatic Operation %	Average			
В	Compatibility	1	3.000	3.000	7.000	5.000	3.800			
В	Size	0.333	1	0.333	5.000	0.333	1.400			
В	Part Intake Limit	0.333	3.000	1	7.000	1.000	2.467			
В	Processing Accuracy	0.143	0.200	0.143	1	0.200	0.337			
В	Automatic Operation %	0.200	3.000	1.000	5.000	1	2.040			
	Total	2.010	10.200	5.476	25.000	7.533	10.044			
	Average	0.402	2.040	1.095	5.000	1.507				

Concept	Alternative Value
Inverted Treadmill	0.401
Double Conveyor	0.271
Felt Ramp	0.327

Backup Slides

- This is 10-point
- This is 15—point Times
- This is 20–point
- This is 25-point
- This is 30—point
- This is 35—point
- This is 40—point
- This is 50—point
- •This is 60-point 41

